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Inverted perovskite solar cells (PSCs) have attracted inter-
est  due  to  their  simple  fabrication,  long-term  stability,  and
small  hysteresis[1-3].  It  is  noteworthy  that  the  quality  of  the
hole-transport layer (HTL) largely determines the device perfor-
mance. Nickel oxide (NiOx) has been paid great attention as a
hole-transport  material  in  PSCs  because  of  its  natural  p-type
property, low cost,  good stability,  and high transmittance[4, 5].
Further,  NiOx has  a  suitable  bandgap  (Eg >  3.50  eV)  and  a
well-matched  valence  band  with  perovskites,  which  is  con-
ducive  to  hole  collection  and  electron  blocking[6, 7].  NiOx-
based  inverted  PSCs  are  promising  for  flexible  and  tandem
solar  cells  due  to  their  negligible  hysteresis  and  low  process-
ing  temperatures  compatible  with  flexible  substrates.  Thus,
more  investigations  into  surface/interface  modification,
bandgap alignment, and the physical principles are worth pay-
ing effort to enhance device performance further.

Sol-gel method is mainly used to prepare Ni(OH)2 by react-
ing  Ni(NO3)2 with  NaOH  and  then  calcination  to  obtain  NiOx
nanoparticles  (Fig.  1(a))[8].  However,  NO3

− as  residue  cannot
be  removed  by  subsequent  process.  They  will  be  embedded
in  Ni(OH)2,  thus  reducing  the  efficiency  and  long-term  stabil-
ity of the device. These ions can be removed at high tempera-
tures,  but  this  will  lead  to  poor  dispersion  of  the  generated
NiOx in  solution,  seriously  affecting  the  quality  of  the  subse-
quent  NiOx HTL.  In  addition,  NiOx has  a  relatively  low  inher-
ent  conductivity,  which  limits  the  efficiency  enhancement  of
PSCs[9].  At  the interface,  organoiodide in  perovskite  can react
with Ni3+ in NiOx layer, and this reaction can affect the device
stability.  As  shown  in Fig.  1(b),  there  are  three  reactions  at
the interface[10]: (1) Oxidation and deprotonation reactions gen-
erate  iodine  vapor  and  free  protons;  (2)  the  formation  of
volatile  products  at  high  temperatures,  including  hydrogen
cyanide  (HCN),  methyliodide  (CH3I)  and  ammonia  (NH3);
(3)  with  the  increase  of  vapor  pressure  of  free  FA  and  MA
molecules,  the  condensation  product  N-methyl  formamidine
can  be  formed.  Therefore,  to  enhance  the  intrinsic  stability
and  mobility  is  necessary  for  improving  the  device  perfor-
mance.

Recently,  doping  ions  have  become  an  important  strat-
egy for improving NiOx conductivity. To increase hole concen-
tration, it is preferred to dope metal cations into NiOx as accep-
tors.  Doping  metal  ions  like  Li+[11],  Cs+[12],  Ag+[13],  Cu2+[14],
Sr2+[15],  Co2+[6],  Zn2+[16],  rare  earth  ions[17] or  Pb2+/Li+[18] can
effectively  improve  NiOx conductivity.  Chen et  al.  doped  Cs+

into  NiOx to  increase  conductivity  and  workfunction,  result-
ing in a significant improvement in efficiency and stability[12].
Doping  bivalent  metal  cations  with  the  same  valence  state
as  Ni  can  improve the  mobility  of  NiOx and device  efficiency.
Fig.  2(a)  shows  that  the  ionic  radii  of  common  bivalent
metal  cations mismatch with Ni  ion radius within 10%, which
can  effectively  promote  the  occurrence  of  substitution[19].
Dong et al.  used KBr as a buffer layer between the perovskite
and  NiOx to  improve  the  valence  band  maximum  of  NiOx to
−5.37  eV,  which  matches  better  with  perovskite  and  facili-
tates charge separation[20]. Chen et al. made facile NiOx modifi-
cation by KCl to synchronously suppress interfacial recombina-
tion and ion migration[21].

The interfacial  recombination loss  and mismatched band
alignment  limit  the  performance  enhancement  of  inverted
PSCs. Though doping metal cations could improve the conduc-
tivity  of  NiOx layer,  the  impurity  ions  cannot  be  avoided.  In
response, Wang et al.  used [BMIm]BF4 ionic liquid (IL) assisted
synthesis  to  prepare  high-quality  NiOx nanoparticles[22].
[BMIm]BF4 is  added  before  the  reaction  of  Ni(NO3)2 with
NaOH  (Fig.  2(b)).  The  multifunctional  substitution  of  imida-
zole  rings  produces  more  chemical  bonds.  In  addition,
cations  can  inhibit  the  adsorption  of  impurity  ions  on
Ni(OH)2,  thus  obtaining  NiOx-IL  HTL  with  high  conductivity.
Yang et  al.  used  TTTS  as  a  chelating  agent  of  Ni2+ in  NiOx
layer  to  improve  its  conductivity[23].  TTTS  and  Ni2+ are  com-
bined  by  strong  Ni2+−N  coordination  bonds  in  NiOx,  increas-
ing the ratio of Ni3+ :  Ni2+ (Fig.  2(c)).  The increase of Ni3+ con-
tent  adjusted  the  band  structure  of  NiOx,  thereby  increasing
the  hole  density  and  mobility,  resulting  in  enhanced  PCE
over  22%.  Carbon  materials  with  good  conductivity  are  also
suitable  modifiers  for  NiOx.  Yin et  al.  developed  a  NiOx/car-
bon  heterostructure  (Fig.  2(d))  as  an  interlayer  for  fabricating
efficient  PSCs  with  good  interfacial  energy  level  alignment
and more efficient charge transport[24].

The  interfacial  lattice  mismatch  and  adverse  reactions  in
NiOx-based  PSCs  cannot  be  ignored.  Self-assembled  molecu-
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Fig. 1. (Color online) (a) Sol-gel preparation of NiOx nanoparticles. Reproduced with permission[8],  Copyright 2023, Wiley. (b) Possible degrada-
tion mechanism of NiOx-perovskite heterojunction. Reproduced with permission[10], Copyright 2022, the Royal Society of Chemistry.
 

Fig. 2. (Color online) (a) The oxidation state and ionic radius for several metals. Reproduced with permission[19], Copyright 2020, the Royal Soci-
ety of Chemistry. (b) Synthesis of NiOx nanoparticles. Reproduced with permission[22],  Copyright 2022, Wiley. (c) NiOx modified by TTTS. Repro-
duced  with  permission[23],  Copyright  2022,  Wiley.  (d)  The  preparation  of  NiOx/carbon  heterostructure.  Reproduced  with  permission[24],  Copy-
right 2021, Wiley. (e) SAM-modified NiOx at the interface. Reproduced with permission[27], Copyright 2021, Wiley. (f) Flexible PSCs with bridging
molecules. Reproduced with permission[28], Copyright 2022, Nature. (g) The energy level diagram for device with PTAA. Reproduced with permis-
sion[30], Copyright 2021, Elsevier. (h) TMSBr buffer layer inhibiting perovskite degradation. Reproduced with permission[10], Copyright 2022, the
Royal Society of Chemistry.
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lar layers (SAMLs) are effective carrier-transport layers in PSCs
due to their  unique ability  to manipulate interface properties
as  well  as  their  simple  processing  and  scalable  manufactur-
ing[25]. However, the defects and pinholes caused by its adsorp-
tion process can seriously degrade device performance. There-
fore,  SAMLs  are  often  combined  with  hole-transport  materi-
als  such  as  NiOx to  improve  hole  transport.  The  phosphoric
acid  (PA)  group  in  2PACz  has  a  strong  coordination  with
NiOx

[26],  and  it  is  easier  to  spin-coat  2PACz  onto  NiOx layer.
The presence of 2PACz can promote the crystallization of per-
ovskite  and  regulate  the  bandgap  of  perovskite.  Sun et  al.
found that  tridentate  binding between MeO-2PACz and NiOx

is  superior  to  the  double-toothed  binding  between  MeO-
2PACz  and  ITO  (Fig.  2(e))[27].  This  close  contact  reduces
defects  and  pinholes  at  the  interface,  thereby  improving
device performance. In 2022, Li et al. used a mixture of 2PACz
and  MeO-2PACz  as  a  molecular  bridge  at  the  interface  to
reduce  interface  recombination  and  they  can  act  as  a  stress
buffer  layer  at  the  interface  to  improve  the  bending  durabil-
ity  of  the  flexible  device  (Fig.  2(f))[28].  Recently,  Zhang et  al.
used p-chlorobenzenesulfonic  acid  (CBSA)  self-assembly  to
anchor  NiOx and  perovskite  crystals,  where  the  chlorine  end
can  provide  a  growth  site  for  perovskite  and  also  release  the
interfacial strain[29]. The sulfonic acid group in CBSA can passi-
vate  the  surface  defects  of  NiOx,  which  is  conducive  to  car-
rier extraction.

Besides  SAMLs,  introducing  long-chain  organic  molecu-
les  can  also  improve  surface  properties  for  bandgap  align-
ment  and  charge  transfer.  PTAA  can  act  as  a  molecular  bri-
dge. Fig.  2(g)  shows that  the valence band of  PTAA (−5.2  eV)
is  very  close  to  the  valence  band  of  NiOx (−5.1  eV)  and  per-
ovskite  (−5.3  eV),  which  can  quickly  transfer  holes  from  per-
ovskite to NiOx

[30]. Recently, Li et al. obtained a PCE of 25.12%
(certified  24.6%)  for  inverted  NiOx-based  PSCs  by  using
NiOx/PTAA/Al2O3 as hole-transport layer[31]. To eliminate multi-
step  photochemical  reactions  at  the  interface,  Wu et  al.  con-
structed  an  aprotic  trimethyl  bromosulfonic  acid  (TMSBr)
buffer  layer  at  NiOx/perovskite  interface  (Fig.  2(h))[10].  TMSBr
has excellent  photothermal  stability,  and strong trap-passiva-
tion  capability.  The  T80 lifetime  for  the  device  under  AM1.5G
light is 2310 h. 
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